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Solutions of part A

One of Maxwell's equations of E M theory is
V.E =?p Substituting, E =—-GradV =-VV,
0
itgives V.(-VV)=2 = vV =—£ This is
80 g()
Poisson's equation for potential » which in

cartesian and spherical coordinates is written
as (a) and (b).

Ans:a,b&d

Rotational kinetic energy of a diatomic

. 1 L
moleculeis = Ela)2 which is expressed as

2
12“’2:( J(J+1)h) which is the format

21 21
used in quantum mechanics
Ans:b&d

A substance in superconducting state behaves
as a perfect diamagnet.

Ans:c

In 1914, a year before he was Kkilled, the
English physicist Henry Moseley found a
relationship between X-ray wavelength an
emitted by element and its atomic number. He
was then able to re-sequence the periodic table
by nuclear charge, rather than the atomic
weight.

Ans:b

Fine structures are the faint lines observed in
the spectrum of hydrogen like atoms. These are
explained by Sommerfeld elliptical model with
relativistic correction and spin of electron as
well as Spin Orbit interaction combined with
relativistic correction.

Ans:c&d

6.

10.

I1.

Using Claussius and
P L

ar TV, -V,
dT =—Tc¢, L = 42 x 80 x 10 joule / gram

Clapeyron equation

and  substituting

T =273K and (V,-V,) = (1-1.0191) x 10°m’
P+dPis calculated to be = 136 atm.

Ans:c
The mass of an electron moving with speed <
V2
is calculated by = —— == myJ2  henceits
v
,/(1 —a

. c .
momentumis m, 2x$ =m,c and its de

. h h Do
wavelengthis A=—=—— whichisthe

p  my
sameas Compton wavelength.
Ans:a&b

Chlorine gas is often used as quenching agent
ina Geiger Muller counter.
Ans:d

In our modern understanding, strangeness is
conserved during the strong and the
electromagnetic interactions, but not during
the weak interactions. The decay of neutral
hyperon A° is a weak interaction as it does not
conserve strangeness.

Ans:a

The orientational polarization of a dielectric is
atemperature dependent phenomenon.

Ans:c

See relevant standard text.

Ans:a,b&d



12.

13.

14.

15.

16.

17.

18.

The moment of inertia of the circular lamina is
h 2 r 2 . . 3

I= .[27” drp,|1-— |r’. This yields I=-—MR>
0 R 10

Ans:b

For proton & neutron m,=m,=m A=
6.626x10™

3|w

2mE

- —14°
J2x1.67x107 x0.08x1.6x10™
Ans:c&d

The given differential equation represents
Forced oscillations.
Ans: d

An any thermodynamic process as dQ=dU +PdV

n
PV n
or CdT =C dT +I—n av=C ar+k [v"av

which gives C= R_R

y—-1 n-1
Ans: d
Two anti parallel currents, one above the other,
repeal each other by a force F =%% N/mand

. . e y7Ru N
maintain equilibrium when —--+*=

A her
e p 8 where

A is the mass per unit length. If the wire is

. -1
pressed alittle, the forceis F= A _ih =g (l—i)
2 (D-x) D
expanding binomially and neglecting higher
power terms the net restoring force per unit
length is expressed as %” x. Thenthe deflecting

force is equal to restoring force in equilibrium

So lj—?z—ﬂ—gx which is the equation of
SHM whose time period 7 =27 \/E .

Ans:b ’

Power dissipatedisW =Vi=V = % =1.6 voltand
the bulkresistance R, :g—% =0.8Q

Ans:b&d

Electric field produced by the given non-
conducting sphere at an outside point (r > R) is

J47Zfzd§p0 (pé} :PO_RZ

R) 12¢r

E=

47rO

19.

20.

21.

22.

23.

The magnitude of electric field inside the sphere

-5

-3 oo 2
2R ) Nowse 1ngE—oweget

asafunctionofris E :

Por
=2
or 3¢

R 2
Emaxzp" at r=—R Further the total
3e 3

electrical energy stored in the non conducting
sphere is obtained by

2 p5
2r = 0,021 2K
£

Ans:a,c&d

Idosulphate of quinine was first used by
English Scientist Herapath as a dichroic
material to obtain a Polaroid. Nowadays
stretched films of polyvinyal alcohol
impregnated with iodine are being used as
Polaroid.

Ans:c&d

Poyntingvector g - £XB

Hy
per second per unit area of cross section. Thereby

ety [ EX B] has the dimension of
P

0
1 (watt] _ TImpulse _
2 2 | 3
\lm m

Ans:b&d

is the energy flowing

mountam

volume

The average distance travelled by an excess
carrier between its time of generation and
recombination in a semiconductor defines
diffusion length.

Ans:b
The angle of recoil (¢) in an event of Compton

cot(6/2)
hv
moc2

showing that ¢=§When9:0&¢=0when9:ﬂ'

scattering is expressed as tan ¢=
1+

Ans:c

Each of the two electrons revolving in opposite
sense in s - orbit of hydrogen like atom
experience a centripetal force = mw’r. When
subjected to external magnetic field B, one of
these electrons is accelerated while the other is



retarded to give a resultant magnetic dipole 25.

2 2 szB
moment Ay =eAvaR? —eBrR” _€X°
4ﬂ'm 4m

+M:i B

as Av==% o Sam 8 obtained from
m(a)+ Aa))2 r=ma’r=*evB
Ans:b

The parity of a system refers to the behavior of
its wave function under inversion of
coordinates through the origin. The parity
operator has eigen values £+ 1 (+1 means even
parity while - 1 refers to odd parity). For
hydrogen like atoms the parity is P = (-1)'
which gives that the function has even parity if
orbital angular momentum quantum number /

24. Torsional rigidity of a solid shaft is expressed ) o
. 2)2 iseven and odd parity if/ is odd.
_aprt _n(#r)
2l 27l Ans:a,b&d
Ans:b&ec
Part B,

B'. Infinitesimal rotations are vectors where as B’ Ifthe two extremities of the line are designated
finite rotations are not. It can be illustrated by as (P,V)) and (P,V,), the slope of the line will
showing that the addition is commutative i,e P-P P-P Tuki -

_ . be m= =— . Taking a poin
d6, +de, = d'Hz +d6, fo‘r small angular rotations. V.-V, V,-V,
quever tbls express101? does not hold true for (PV)ontheline, equation of line can be written as
finite rotations about different axes showing
that finite rotations are not vectors. (P-P)=- A-Fh (V-v)
3 V, -V
B®>.  Planck's Radiation formulais u,dv= %dv o RT
C{em_lj changing the variable P =—
The total radiant energy , 4
* F 3 P-P |V P-P \%4
E:IEuudU:Z—iz}lI+du substituting T=—[¥J — + [ L2y +P1}_
o4 ¢ o[e,q_lj V,-V, ) R V,-V, R
hv . This is the equation of a parabola showing that
——=Xx oneobtains ) )
KT T and hence the internal energy (i) increases
27rk4T4 = Bde orktr? z . first and then decreases when volume is
E= 32 1 ~ T 35 15 = increasesd.
h™c 0¢ ~ h™c 5 . . . .
B’.  According to Einstein's mass energy relation
B’. The average energy of Planck's oscillator is when a photon of energy E > 1.02 MeV is

<E>= which in the limit of hv << kT

o
ekl —1

turns out to be equal to kT, the classical value.

Thus if Planck's constant h were smaller than B¢

its present value, results of quantum
mechanics would not have been conspicuous
than they are The statement is therefore
refuted.

converted into matter to produce an electron
positron pair in vacuum, the conservation of
momentum yields the two particles to move
with velocities > ¢ which is not acceptable.

The self energy (work done in getting a charge
assembled in its present form) of a spherical
distribution of charge

1 3¢

T 47Z'r3p
-1 (2P urrdrp =
4re, SR

4me, Y 3

0



increase with decreases in radius so more

;(l+]—k)><;(l—]+k) 1

work. This justifies the statement. A= = =——(j+k)
pY a.bxc i a
B’.  The given expression iha_ is an operator for 2
p a a
position vector r in the momentum space. . ixa ;(i— j+ ")X;(“r itk) (-0)
B = = =——(i—-k
B'. Mixing of two classical ideal gases is an a-bxe % “
irreversible process. Entropy always increases
during an irreversible process. - axb —(i+jrk)x—(i+j-k) |
9 . . . . . C= = =——(7i—7
B".  Reciprocal lattice is described by reciprocal a.bXe a a (i-J)
bxc cxa axb
vectors A= ,B= = 2 .
(abc) (abc) (abc) Thus these three reciprocal lattice vectors
where a. b & ¢ are the lattice unit vectors. represent the primitive vectors of a fcc lattice.
In case ofa bec lattice with 'a' as the edge of unit Y Hence Fhe statéme.nt. '
cell, the primitive vectors may be expressedas B - The given circuit is a full wave voltage
- - . doubler. For half cycle one diode conducts and
a a a
a= 5(” jtk), b= 5(” j=k) &c= F(i=j+k) for another half cycle the another diode
the corresponding reciprocal lattice vectors conducts yielding swice the Peak of input
will then be voltage between the output terminals.
Part B,
P'. (a) When a particle of mass m moving with

velocity u makes head on elastic collision with
another particle of equal mass, the two merely
exchange their velocities (This being a consequence
of conservation of energy and momentum.)
Thus with u=u&u,=0 we get v,=0 and v,=u

(b) In case the Kinetic energy after collision is
three-fourth of original value then # =V, +V,

3 . u
and —u’ =V +v; givesy,—v, =— Therefore

o 1
=i,

(c) The total energy after collision is

the coefficient of restitution is € =

lmvl2 —klmvz2 = E=0.2J. Thereby
2 2

2E o
vl +v] = —Also v +v, =u substituting v,

. 2 2 _
one obtains Vi +(#=v) =gpor

2E . .
2v] —2uv, +u’ —=—=0 Solving the quadratic
m

2ui\/4u2 —4><2(u2 —2—Ej
m

2X2

For

equation v, =

2FE
V, to be a real value u’ —2(142 ——j >0
m

m m

4FE
:>u2£4—EoruS,’—oruS\/§=2\/§m/S.

In an elastic collision however because of the

conservation of energy 1 mu’ = l mv: =0.2J
2

[2E
Thereby u=,|~— =2 m/S Thus 2<u< 2+/2m/S
m

The gravitational attraction of two masseson 'm'
GM ,m GM ,m

;= - =>x=2R
X (6R - x)
Hence to make an escape of mass m from body

A, it must be given energy so as to take it to the

isbalanced at —




gravitational front x =2R . Means the required gain
in PE must be equal to the initial kinetic energy So

‘:_GMAm_GMij|_|:_GMAm_GMBmi| 1,

=—my

2R 4R R 5R 2

G47R pm  GAzR 3pm [GMR‘pm G4/z‘R‘3pm:| 1
3(2r)  3(4r) 3(R) 3(5R)

4
v? =§7erR2 =v=1.88 m/S

2

P’.(a) According to Bohr Model the negatively
charged muon will move in a circular orbit
such that the necessary centripetal force is
provided by electrostatic attraction i,e

2 2
m,yv-  KZe

= or m#vzr:KZez while Bohr
r r

quantum conditionis 7,vr =nh now dividing

KZe’ _ .
V= 2 substituting the value, the radius is

n
222 222
nh nh

m,KZe* 20TmKZe*

=256x10'm

obtainedas r=
(b) The average Kinetic energy of a molecule of
gaseous hydrogen is
%kT =13.6x1.6x10"" =T =1.05x10°K

P’.  The condition of maxima for a grating is
(e+d)sin@=ni

differentiating, the angular dispersion is

46 _ n = 1
dA (e+d)cosf \/(e+d)2—(e+d)zsin26’
o 4 n = 3794.75 rad/m

rﬂ:\/ 2 2192
(e+d) —n’A

while the linear dispersion is
« de f

dA (e+d)2—nz/12
1

gratingelement (e+d) = 000" 1.67x10°m

=948.7rad where

Further the two wavelengths are diffracted at

. . 1 nd
(e+d)sing, = nd,= 6, =sin l(ﬁj

=—mv

5

and

(e+d)sin®, =ni, = 6, =sin™" ((Zﬁz)}

Thus the linear dispersion of two wave lengths is

Ay=f(t9l—92) or

Ay = f[sin_l ﬂ—sin_l ﬂ} or
e+d e+d

Ay= f (sin™0.70752 —sin” 0.70680)
Ay =0.25(45.03— 44.975)><% =0.24mm

Further the resolving power of the grating is

i=nN 3%= 2N so that N =491 lines

dA
so the width of ruled space turns out to be
Ax = el =0.82mm

6000

Conservation of momentum in one
dimensional collision between two particles

which coalesces after collision yields

m()lul

MV
—_—t m02 xX0= _ (1)
how v
c’ c’
Energy considerations give
2 2
m, M c
e+ my, X 0* == )
L \/_v_
c’ c’
Dividing equation (1) by (2)
My, U, _
==V e 3)
u,
My, + Mgy 4 [1= 2
c
Substituting in (1) or
My, U, M, My, U,

= X or

v? u’
\/1—2 m01+m02 1—72
c &

2
\/ o
CZ



2 2
U, my U,

2 2
c 2
Alm o +m, 1=
01 02 C2

On squaring and rearranging one obtains

M=+ + 2™ Thisis required.
0 01 02 B
_M
2
C

1

Internal energy of a gas is the energy possessed
by it because of its molecular composition and
may be defined as the sum of the kinetic and
potential energies of all its molecular
constituents. In case of an ideal gas the energy
of all its molecules is purely kinetic According
to Joule's law the internal energy of an ideal
gas is a sole function of temperature and does
not depend on pressure and volume i,e Ac

() o) () -G

Also U is a state function and dU is a perfect
differential. First law of thermodynamics
gives, AU = AQ — AW. Unlike an ideal gas U
forareal gas shares a potential energy term and
(g—l‘il #0 rather U =J.CvdT+J.§ gv. The

behavior of areal gas however approximates to
an ideal gas at low pressure & high
temperature. Exchange of heat energy is a
common process in thermodynamics and heat
given or taken by a system is expressed as

dQ = mcdT or c=ld—Q
m dT

specific heat. In case of a gas ¢ defined by this
expression brings in an ambiguity. To define ¢
uniquely two types of specific heat of a gas are

defined as C, :(Z_?j and C, = [@j
14 P

denotes the

ar
there by using second law of thermodynamics

ds ds
. is C,—C,=T|| —| —|—
the differenceis C,—C, [{ deP (dT)j

6

considering the entropy S, a function of Vand T

we write dS:(a—Sj dT+(a—S) dav
aT ), v ),

dividing it by dT at constant pressure and

) (a’Sj (as) (asj (dvj
rearranglng e - — = — -
ar ), \or ), \ov /), \ar ),

substituting it back, one obtains

as dv .
C,-C,=T||— || — using Maxwell’s
ov ), \ar ),

. ( oP ) ( os )
relation | — | = | — | one gets
aT J, v J,

-1 ()
ot ), \ dT ),

Now for one mole of an ideal gas PV = RT

P R R
gives (a—j =— & (B_Vj = — Thereby
aTr), v or ), P
RR
€, =G, =TL 5 =C,-C, =R
For a Vander Waal gas [P +i2j (V—b)=RT
\%4

oT ), V-b

(av j R o
— | = substituting
oT /, RT 2a

(v-b) =

3

(V-b) AN%
R R
in(l) c,-c, =T
V-b RT 2a
)
(v-b) \V
R
C,-C, =——————— considering b to be
) 2a(V -b)
V'RT
R
very small ¢, -C, = — or
[=3a)
VRT

2a \" 2a
c-c =r{1-—| =r[1+—
VRT VRT

This gives the required expression.



One dimensional infinite potential well of
width a centred at origin x=0 can be described

a a

as V(x)=0 Ty

(x)=0 for S SAs

andV =1} _22 22
(x) for 5 by 5 a
=—= Xzz

The boundaries are

The one dimensional Schrodinger equation is
n’ d’¥Y

-— Vx)Y=E¥Y W - 1
2m dx’ ( ) M

Within the infinite potential well, it becomes
n d’y dZ‘I’

_ﬁW_E\P I S S N | J— )

/2
Where k =+ o Assolution of differential

equation (2) may be W=A sin kx +B cos kx ----(3)

boundary conditions W =0at x = i% implies

0=—As1n%+B cosk—za at x——% ----(4)and
O=Asink—a+B cosk—a at x=+2 5)
2 2 2

adding 2B cos k7a=0:> ka=(2n+1)7

subtracting 2 Asin ]%a =0=>ka=(2n)7m

Hence the possible eigen values are ka = nz or

n’r’h’
E= The first three eigen values being
2ma
222 222 232
T°h 4rh Orh
E=——, k= - E;= > The
2ma 2ma T 2ma

corresponding eigen functions are respectively

‘Pnddchosw &Y, =Asin 2nmx

even

wheren=0,1,2,3, ....

2 3
‘Pl=Bcosﬂ,‘Pﬁ=Asinﬂ&‘I‘3=Bcosﬂ
a i a a

The normalization constant A is found as

[w,®,dx=10r14P jsinzwdle
a

a 2 JT. 1
IAIZI/; (l—cos2>< n x)dx=1:> A=—r
. ;

Ja

in each case. The positions of maximum

probability may now be find as
\‘PZ

n=2

|
t
|
|
|
|
|

| L n=0

-al2 -3

Wavefunction of a particle confined in
a |D infinite potential well of width 'a'

P8.

P9.

i
I
|
|
|
|
a2 -al3 -al4 0 aJ4 a/3 -2l
Probability Diagram

-al4 0 al4-al3 -l

The expectation value may be obtained as

= I‘I‘ZXT,ldXZI Al stinz 2”;” dx or
— AP 1—c0s 2% 2% ) v or
(x)=t1ar [7 x

< >—IAIZI " xdx =0 means the particle is

most likely to be at the originx =0 i,e atthe
middle of the well. Also

(2*)=1AF Iau//zzxz(l—cos 2 2”’”) dx

2

or ()= 1AF jlf/2x2dx:|A|2£:12

Thereby the uncertainty A x = <x2 > - <x>2

Zeeman splitting of spectral lines is
c
Av = —d
47: A2 A
c eB e
Then —dA=—-———=—
i drm m

Using v=Sdu=—
A

4

i
A’B

e 47 x3%x10°x0.161

—= — =1.749x10" C/Kg
m  1x5890x5890x10

Resolving power of a prism of base thickness t

si—t% Thereb 381—960_8888t:>t 4.12cm.

dA

Maxwell's second equation V.B=0 impresses
upon the fact that B can be expressed as the



curl of a vector potential A so we write it as
B=VxA4=curl A sothatV.B=V.V x4
= 0 (Since the divergence of a curl is always
zero). This function A defines the magnetic
vector potential which is useful to understand
various aspects of electromagnetism. Fourth

equation VxB =1J= Vx(VxA) =V (V.A)-V*
A=p,J. Setting V.A=0, one obtains V' A=y, J.
The vector potential for a linear current element
isoftenexpressedas , _ Mo (1 Mo [J
A=l dige ] an

For a long straight conductor carrying current i,

the vector potential 4= ad] Jir di

4r
Using r=+/x>+R? and azndx dl
T 1
A=Cp | ———— or
4z _L/2\1X2+R2 L T
7 +L/2
A:ﬂnln[x+\/x2+R2} PL___16
dr -2 R
2
; LiE g
A:Zliﬁln % or
T
L E e
2 4
L .
2\2
| H(lﬁgj
_ Mt 4
A—47[771n 1 | ForL>>R
4R* )2
—1+[1+ ZJ
[ 1 4R
) 1+(1+2 5 j ) P
actbipy| 28 ) | mig
in ( 14Rj ar R
—1+| I+ ——
L

P 2/ 1n (ﬁj . This gives vector potential
4 R

for a current carrying straight wire. Considering
two parallel wires carrying equal and opposite
current, the vector potential A is expressed as

a=Hilop h{ij—ln L Aiga| R
4 R, R, 47 R,

P10. From KVL (in first fig.):
Vee = Iy Ry =V —I; R, =0 Putting
I,=1.+1, :ﬂls +1, =(1+ﬁ)13
Vee = Ve =(1+ ) LR, + L, R,

— VCC _VHE _ 12-0.7
"R +(B+1)R, {220+(100+1)x3.3}x10’
1, =2042uA
Further
I, = (,B+1)IB = (100+1)><20.42 =2.062mA
Then 1 - 26mV _ 26mV — 12610
1, 2.062mA
Now
s[5
12volt =
C, 3
V, o1 B=100
L C Ro=cor
1 Vo
Zi =

z, = pr.+(B+1)R, =100x12.61+101x3300
7, =33456kQ= R, and Z =R, I Z,

_ 220x%334.56 3_
Z, = 350 £334 56 x10°=132.72kQ
Z, =R, llt,or

~ 3300x12.61

= =12.56 Q=r, Finally the
7 3300+12.61 ¢

voltage gain A Yo Ry 3300
"V R+r, 3300+12.61

or A, =0.99 =1



